share article

Share on facebook
Share on twitter
Share on linkedin

ON Semiconductor launches automotive qualified SiPM array product for LiDAR applications

No items found

ON Semiconductor’s Embedded World announcement made today is its new ArrayRDM-0112A20-QFN, the first automotive-qualified SiPM product in the market. This is a new RDM-Series silicon photomultiplier (SiPM) array that extends the LiDAR sensor capabilities to its broad portfolio of intelligent sensing solutions.

“The high-resolution depth data provided by LiDAR enables instantaneous and accurate object identification in challenging low light conditions. As the first automotive qualified SiPM, the ArrayRDM-0112A20-QFN will enable long range, cost-effective LiDAR solutions for the next level of safety and autonomy,” commented Wade Appelman, senior director, Automotive Sensing Division at ON Semiconductor.

The ArrayRDM-0112A20-QFN is a monolithic 1×12 array of SiPM pixels based on the company’s market−leading RDM process, which enables high sensitivity to near-infrared (NIR) light to achieve industry-leading 18.5% photon detection efficiency (PDE)(1) at 905 nanometers (nm). The high internal gain of the SiPM allows sensitivity down to the single-photon level, a feature that in combination with the high PDE, enables the detection of the faintest return signals. This results in the ability to range to greater distances even with low reflective targets.

SiPM technology has gained momentum in recent years and has become the sensor of choice for broad-market depth sensing applications due to its unique feature set. SiPMs have the ability to deliver the highest signal-to-noise performance for long distance ranging in bright sunlight conditions. Additional benefits including lower supply biases and lower sensitivity to temperature changes make it an ideal upgrade for systems that use legacy avalanche photodiodes (APDs). SiPMs are produced in a high-volume CMOS process, allowing for the lowest detector cost and therefore enabling broad-market LiDAR solutions.

Using laser light to measure the distance of an object has spanned the fields of automotive, consumer and industrial applications. In automotive, LiDAR can be employed to improve safety and driver assistance systems (ADAS), aiding features such as lane keeping and traffic jam assist by complementing and providing redundancy with other sensing modalities. LiDAR is becoming commonly used for fully autonomous driving use cases, such as robotic transportation, to safely navigate the environment in real time. Benefiting from the high PDE of ArrayRDM-0112A20-QFN, LiDAR systems supporting these functions have been proven to range over 300 meters in distance. More distance gives more time for the vehicle to respond to unexpected obstacles.

Share this article

Share on facebook
Share on twitter
Share on linkedin

Related Posts

View Latest Magazine

Subscribe today

Member Login