share article

Share on facebook
Share on twitter
Share on linkedin

Renesas Develops New Flash Memory Technology


Renesas Electronics has developed a new flash memory technology using the next-generation 28nm process, which achieves larger memory capacities, higher readout speeds and over-the-air (OTA) support for automotive microcontrollers (MCUs). This new technology offers the largest capacity of embedded flash memory on an MCU – 24MB – to date, and affords 240MHz random access read speeds, the industry’s fastest for embedded flash memory. The technology also offers low noise write operations when performing OTA wireless software updates, and high-speed and robust operation for OTA software updates.

More recently there have been demands for larger embedded flash memory capacities in the MCUs, and specifically due to the increasing scale of the control software in leading-edge technologies for car systems, in autonomous driving and electric drive applications. OTA technology accelerates the demand for larger capacities to assure adequate storage area for updated programs. Since it is necessary to assure real-time performance given the addition of new functions such as functional safety, faster random access read times from the flash memory are also strongly desired. In addition, three things are now strongly needed in OTA: low-noise design so that the updated software can be stored reliably even when the car is operating, reduced downtime during software switching, and robustness to avoid incorrect operations even if unintentional interruptions occur when updating or switching software.

The newly developed flash memory technology addresses these demands with: 24MB on-chip flash memory based on the high-speed, high-reliability SG-MONOS technology for the embedded flash memory used in Renesas’s MCUs. The memory cell size of the 28nm generation developed here is reduced by more than 15%, from the earlier 0.053µm² to smaller than 0.045µm². While suppressing increases in the chip size, this new technology allows the inclusion of 24MB of code storage flash memory, the industry’s largest capacity for embedded flash memory. Renesas has also included 1 MB of data storage flash memory in the test chip for parameters and other data.

The 240MHz random access read speed, is achieved through word line division, an effective method for increasing the speed of random access reads in embedded flash memory. However, this division increases the number of word line drivers and causes reliability degradation due to time-dependent dielectric breakdown (TDDB) of the transistors included in those drivers and word line supply voltage drops due to increased leakage current. Renesas resolved these issues using word line driver stress mitigation and distributed word line supply voltage drivers and has verified 240MHz high speed random access, the industry’s highest in a test chip, over a wide temperature range (junction temperatures from -40°C to 170°C).

The noise-reducing technology was developed by changing the write current applied to each memory cell between initial operation and later operation when programming the flash memory, Renesas has reduced the peak current consumption from the external power supply (Vcc) by 55 percent without reducing the throughput compared to earlier Renesas devices. This suppresses the adverse influence of supply voltage noise on the MCU itself during OTA operations when the car is running. Renesas has also applied the idea of varying the write current to high-speed write mode, in which the number of simultaneously programmed cells is increased. As a result, the new device achieves high-speed programming at 6.5 MB/s in this mode. This makes it possible to suppress the increased test times associated with the large memory capacity.

In this test chip, the code storage flash memory is divided into a storage area for software in use and a storage area for updated software. This makes it possible to switch the software in less than 1ms at ignition off. Furthermore, the software switching settings are duplicated and new state flags were added to prevent incorrect operation in the event that the software updates or switching is unintentionally interrupted. This achieves, at the same time, the robust operation that allows executable control software to be selected reliably and a reduction of down time during which the car cannot be used.

The above technologies make it possible to support the increasing scales of automotive control software, high-speed real-time control, and advanced OTA. Moving forward, Renesas is committed to continued development of embedded flash memory and striving to achieve the higher capacities, higher speeds, and lower power consumption that will be required to support new applications.

Share this article

Share on facebook
Share on twitter
Share on linkedin

Related Posts

View Latest Magazine

Subscribe today

Member Login