share article

Share on facebook
Share on twitter
Share on linkedin

CEA-Leti’s energy-harvesting ICs for harsh environments


CEA-Leti is working on two energy-scavenging projects: The first focuses on a system in which vibration energy is converted into electrical energy by means of a piezoelectric material fixed on a beam. The second project explores converting vibration energy into electrical energy by means of an oscillating magnet in a coil. The harvesters in both approaches require specific IC interfaces to enhance the stored, harvested energy.

Energy harvesting is the action of scavenging available energy in the environment from vibrations, thermal gradients, or solar radiation and turning it into storable electrical energy.

Systems that can be powered by surrounding energy sources allow longer lifetimes than battery-powered systems. That is particularly important in applications such as sensors implanted inside the human body, or sensors placed in critical environments such as cars, trains and airplanes. CEA-Leti’s projects cover both, small-scale energy harvesting applications such as those for inside the body, and larger scale devices, i.e. for home automation (domotics) and aeronautic applications.

One of the major issues when harvesting energy from vibrations is the bandwidth of the harvester, which is especially narrow around the resonant frequency of the harvester,” said Adrien Morel, lead of the first project. “Indeed, vibrations are, by nature, unpredictable: their frequency may vary with time, which does not associate well with the fixed resonant frequency of vibration energy harvesters.”

Self-Tunable Piezoelectric Energy Harvesting IC

The team in the piezoelectric energy-harvesting IC study, which included researchers from the SYMME lab at Université Savoie Mont Blanc, designed an adaptive electrical interface that both collects the energy from the harvester and dynamically adjusts the harvester’s resonant frequency. This results in a 446% larger harvesting bandwidth, which is the largest bandwidth among state-of-the-art solutions. The harvesting and tuning are self-powered, and their total consumption (around 1µW) is at least two orders of magnitude lower than the harvested energy from vibrations that are available in the environment (100µW to 1mW).

“The end-to-end efficiency of the circuit is as high as 94 percent, which is among the highest efficiency compared to other harvesting circuits that can be found in the literature,” Morel said.

Electromagnetic Energy Harvester IC

The paper from the second project describes fabrication of a harvester IC that reaches the published highest end-to-end efficiency, up to 95.9 percent, and dramatically reduces the cost of the bill of materials. The IC achieves 210% and 460% energy-extraction gains, respectively, compared to the full-bridge rectifier in periodic vibrations and shock conditions.

“The unprecedented 95.9% end-to-end efficiency is the multiplicative factor  between the extraction efficiency and the conversion efficiency,” said Anthony Quelen, lead author of the second paper. “The extraction efficiency is maximized with the real- time optimal input impedance generator. The conversion efficiency is maximized with the new boost architecture using the harvester coil.”

The 460% energy-extraction gain contrasts the harvested energy with the new IC interface and the harvested energy with a standard full-bridge rectifier interface under shock-mode excitation.

These results point the way toward significant commercialisation of vibration-powered systems. These harvesters could complement or replace batteries, making possible the widespread deployment of sensor nodes for monitoring and getting data from forests, deserts, bridges, and buildings. They also could lead to the development of autonomous (battery-less) sensors for use in harsh environments, such as high temperatures, and in places where access is difficult, such as the human body or airplane engines. In addition, low-cost ICs that maximise end-to-end efficiency are key to driving more users to deploy Internet of Things networks with multiple sensing devices.   

Share this article

Share on facebook
Share on twitter
Share on linkedin

Related Posts

View Latest Magazine

Subscribe today

Member Login