share article

Share on facebook
Share on twitter
Share on linkedin

CEA-Leti develops a cheaper photoacoustic-spectroscopy device for detecting chemicals and gases


Leti, part of CEA-Tech, has developed a photoacoustic spectroscopy technology for monitoring dangerous chemical emissions and traces of gas that could reduce the cost and the size these systems by a ten-fold or more compared to existing tools.

Photoacoustic (PA) spectroscopy is one of the most sensitive techniques available for  monitoring dangerous chemical emissions and traces of gas. Coupled with cascade lasers, this technology is used in a large number of application fields, from industrial control to emission monitoring and biomedical analyses. But mass production and widespread use of such systems will require smaller footprints and lower manufacturing costs.

Over the past six years, CEA-Leti has developed different versions of miniaturised photoacoustic cells and  demonstrated the detection of gas traces with a tiny silicon based-PA cell. One drawback, however, was that this system relied on commercial MEMS devices. Even if these components are reliable and meet some performance requirements, they are not dedicated to photoacoustic gas detection, or easily integrated into a fabrication process flow.

CEA-Leti’s new microPA technology combines a fully integrated MEMS microphone and mid-infrared photonics built by stacking two 200 mm Si wafers. A sensor wafer includes the microphone made of a MEMS mechanical diaphragm and nanometric piezoresistive gauges together with capillaries and fluidic ports. The second wafer, a cap wafer, includes the PA cell, the expansion volume, SiGe waveguides guiding the light into the PA cell, and electric contacts.

“The specific design of the PA cell allows increased immunity to external noise and to the variation of measurement conditions,” said Jean-Guillaume Coutard, part of the project. “This result stems from CEA-Leti’s proprietary technology for the microphone fabrication and it opens the way for the integration of these devices into portable detection devices.”

Silicon photonics leverages the advantages of high-performance CMOS technology, providing low-cost mass manufacturing, high-fidelity reproduction of designs, and access to high-refractive index contrasts that enable high-performance nanophotonics.

CEA-Leti’s microPA technology builds on the EU-sponsoredREDFINCH project, a consortium of eight partners that are using photonic components at mid-infrared wavelengths to develop compact chemical sensors for both gas and liquid applications.

Share this article

Share on facebook
Share on twitter
Share on linkedin

Related Posts

View Latest Magazine

Subscribe today

Member Login