

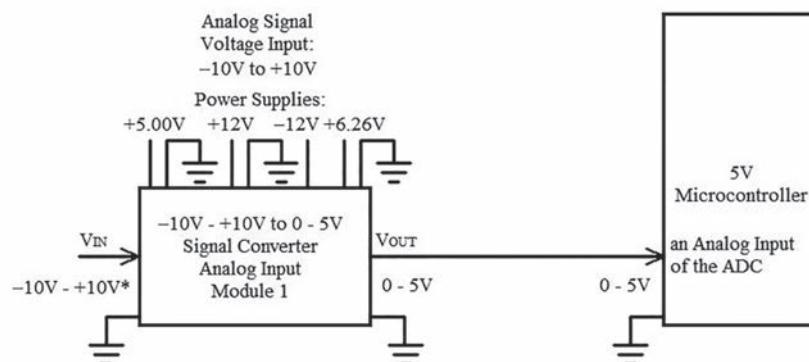
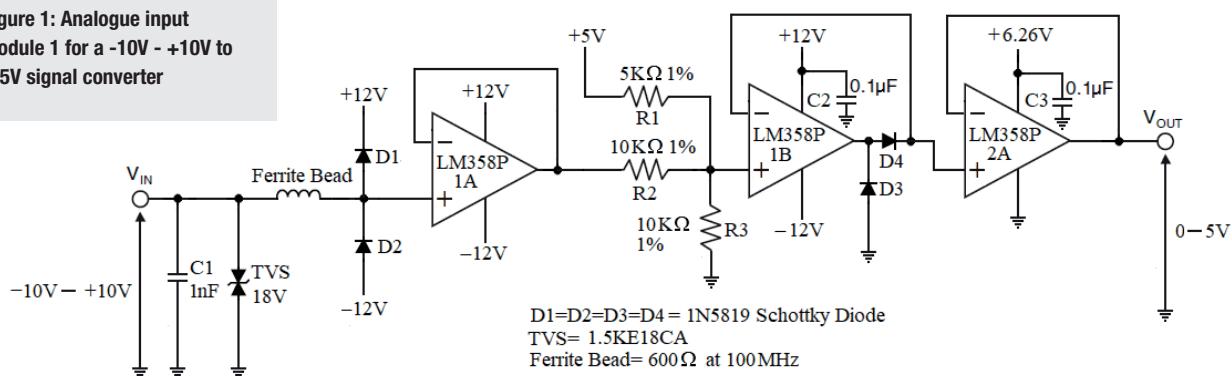
Analogue input modules for a -5V to +5V to 0-5V signal converter

By Dr. Murat Uzam, Academic and Technical Author, Turkey

This series is about a project involving thirteen analogue input modules and seven analogue output modules for use with a 5V microcontroller via its ADC and DAC channels. In columns two to four, we discussed the 0-5V analogue input modules 1 to 5, which accept DC input voltages from 0V to +6.26V, +12V, +24V and require a different DC power supplies.

In column five we considered the 0-10V to 0-5V signal converter and its analogue input modules 1 and 2. These modules handle DC input voltages from 0V to +24V, and operate from +6.26V and +12V for module 1, and +12V DC for module 2, respectively.

In column six we covered analogue input modules 1 and 2 of the -5V - +5V to 0-5V signal converter, which accepts DC input



voltages from -12V to +12V. Analogue input module 1 requires four DC power supplies (+5V, +6.26V, -12V, +12V), whereas module 2 needs two (-12V, +12V).

In this month's column, we'll focus on the tenth and eleventh analogue input modules, which are analogue input modules 1 and 2 of a -10V - +10V to 0-5V signal converter. The first module can accept DC input voltages from -12V to +12V and requires four DC power supplies: +5V, +6.26V, -12V, +12V; see Figures 1 and 2. Respectively, module 2 needs only two DC power supplies: -12V, +12V; see Figures 5 and 6.

Analogue Input Module 1

In this design it is assumed that the input voltage range $V_{IN} = -12V$ to $+12V$. When $-12.00V \leq V_{IN} < -10.00V$, $V_{OUT} = 0.00V$; when

Figure 1: Analogue input module 1 for a -10V - +10V to 0-5V signal converter

*: Input voltage values from -12V to +12V are accepted without any damage.

When $-12.00V \leq V_{IN} < -10.00V$, $V_{OUT} = 0.00V$.

When $-10.00V \leq V_{IN} \leq +10.00V$, $V_{OUT} = (V_{IN} + 10V) / 4$.

When $+10.01V \leq V_{IN} \leq +12V$, V_{OUT} will be equal to a value from 5.01V to 5.07V.

Figure 2: Connecting analogue input module 1 for a -10V - +10V to 0-5V signal converter to the analogue input of a 5V microcontroller

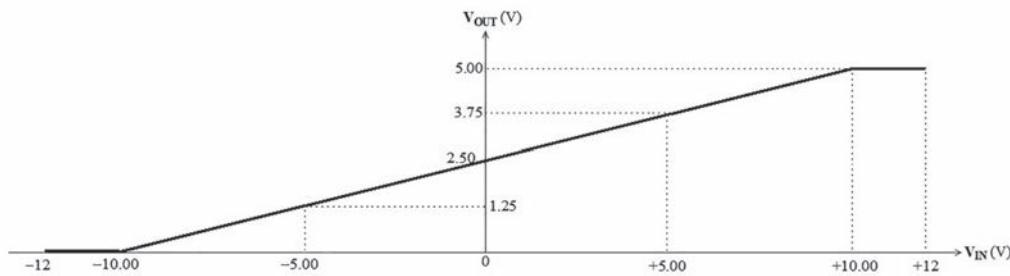


Figure 3: V_{OUT} vs. V_{IN} for analogue input modules 1 and 2 of the 10V - +10V to 0-5V signal converter

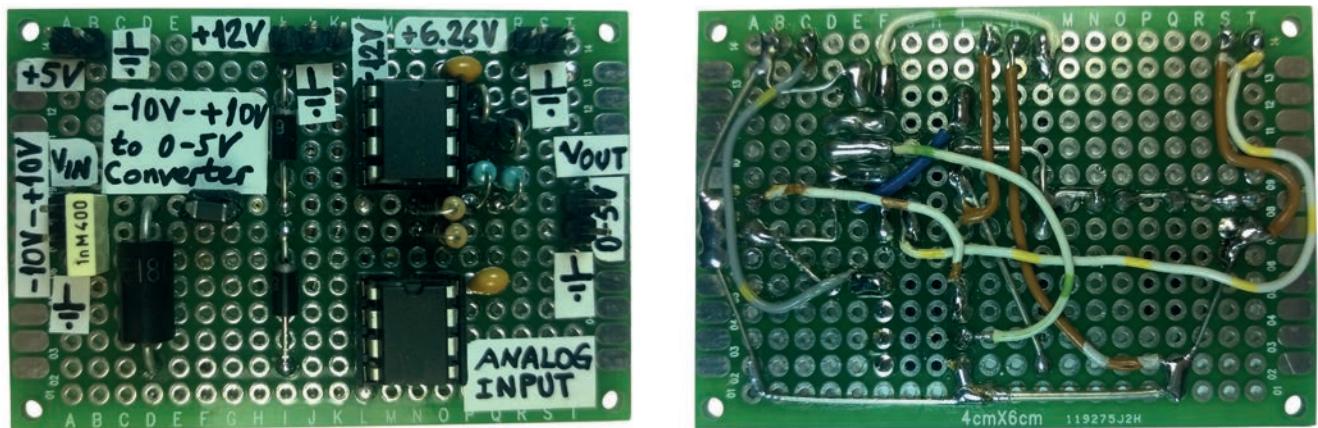


Figure 4: Top and bottom view of the prototype of analogue input module 1 of a -10V - +10V to 0-5V signal converter

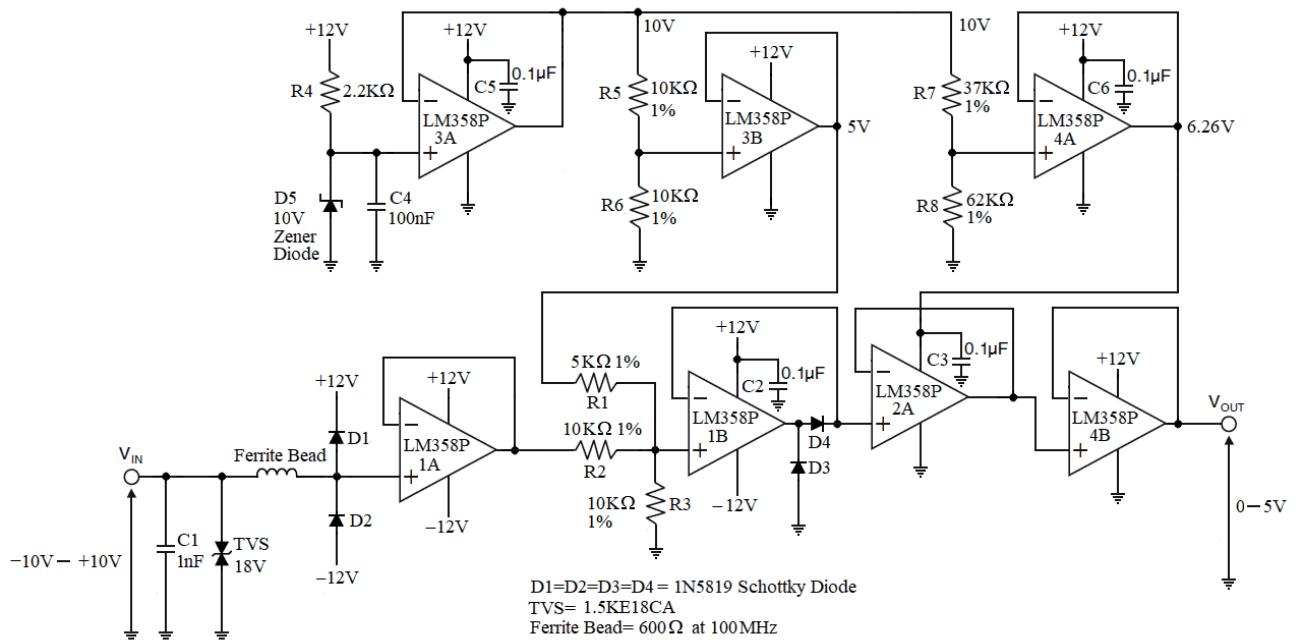
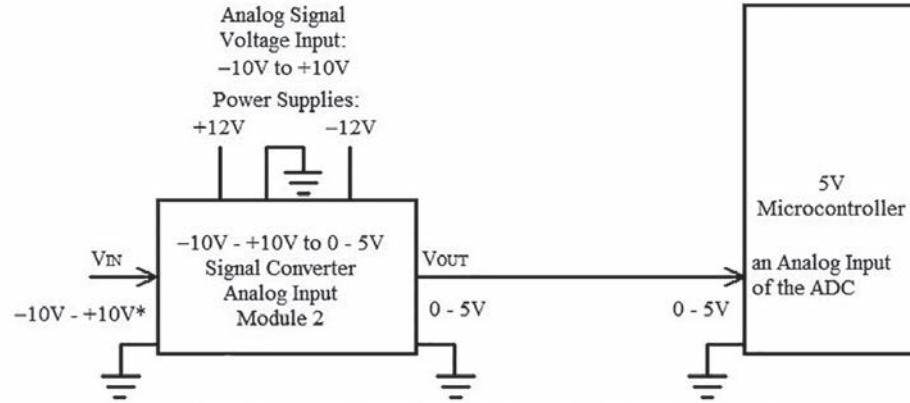



Figure 5: Schematic diagram of analogue input module 2 of a -10V - +10V to 0-5V signal converter

V_{IN}(V)	V_{OUT}(V)
+12.00	5.0X
..	5.0X
+10.00	5.00
..	..
+9.00	4.75
..	..
+8.00	4.50
..	..
+7.00	4.25
..	..
+6.00	4.00
..	..
+5.00	3.75
..	..
+4.00	3.50
..	..
+2.00	3.00
..	..
0.00	2.50
..	..
-1.00	2.25
..	..
-3.00	1.75
..	..
-4.00	1.50
..	..
-5.00	1.25
..	..
-6.00	1.00
..	..
-7.00	0.75
..	..
-8.00	0.50
..	..
-9.00	0.25
..	..
-10.00	0.00
..	..
-12.00	0.00

Table 1: Example input and output voltages for analogue input modules 1 and 2 of the -10V - +10V to 0-5V signal converter

(5.0X: a value from 5.01V to 5.07V, due to the electrical characteristics of the LM358P-2A used)

*: Input voltage values from -12V to +12V are accepted without any damage.
 When $-12.00V \leq V_{IN} < -10.00V$, $V_{OUT} = 0.00V$.
 When $-10.00V \leq V_{IN} \leq +10.00V$, $V_{OUT} = (V_{IN} + 10V) / 4$.
 When $+10.01V \leq V_{IN} \leq +12V$, V_{OUT} will be equal to a value from 5.01V to 5.07V.

Figure 6: Connecting the analogue input module 2 of the -10V - +10V to 0-5V signal converter to an analogue input of a 5V microcontroller

$-10.00V \leq V_{IN} \leq +10.00V$, $V_{OUT} = (V_{IN} + 10V) / 4$.
 When $+10.01V \leq V_{IN} \leq +12V$, V_{OUT} will be between 5.01V and 5.07V, due to the electrical characteristics of the LM358P-2A used.

The relationship between V_{OUT} and V_{IN} is shown in Figure 3. It can be seen that input voltages up to +12V are accepted without damage to the circuit, outputting 5.01V to 5.07V.

This design is used to level-shift a bipolar -10V - +10V analogue voltage signal to provide a unipolar 0-5V analogue input signal. The transfer function is obtained from the superposition principle:

$$V_{OUT} = \left(\frac{\frac{R1 \cdot R3}{R1 + R3}}{R2 + \frac{R1 \cdot R3}{R1 + R3}} \right) V_{IN} + \left(\frac{\frac{R2 \cdot R3}{R2 + R3}}{R1 + \frac{R2 \cdot R3}{R2 + R3}} \right) 5$$

Since $R2 = R3$, $R1 = \frac{1}{2} R2$:

$$V_{OUT} = \left(\frac{1}{4} \right) V_{IN} + \left(\frac{1}{2} \right) 5 = \frac{V_{IN} + 10}{4}$$

The analogue input V_{IN} can be subjected to electric surge or electrostatic discharge on the external terminal connections; TVS (transient voltage suppressor) shown in the circuit provides highly effective protection against such discharges. A ferrite bead is connected in series with the input path to add isolation and to decouple from high-frequency transient noises. External Schottky diodes generally protect the operational amplifier. Even when internal ESD protection diodes are provided, the use of external diodes lowers and offset errors.

The dual series Schottky barrier diodes D1 and D2 divert any overcurrent to the positive or negative power supply. The operational amplifier LM358P-1A, with bipolar supply

voltages, provides a high input impedance and is connected as a buffer amplifier (voltage follower). Diodes D3 and D4 ensure that when $-12.00V \leq V_{IN} < -10.00V$, $V_{OUT} = 0.00V$. The operational amplifier LM358P-2A, with its +6.26V supply voltage, acts as a voltage limiter and is connected as a buffer amplifier. V_{OUT} is obtained from the output of the LM358P-2A.

Table 1 shows some example input and output voltage values for the analogue input module 1 of a -10V - +10V to 0-5V signal converter. Its prototype circuit board is shown in Figure 4.

It's worth noting that for proper operation you should make $R2 = R3$, $R1 = \frac{1}{2} R2$ and $+5V = +5.00V$.

Analogue Input Module 2

In designing analogue input module 2 of a -10V - +10V to 0-5V signal converter, as with the previous module, we've assumed that the input voltage range $V_{IN} = -12V$ to $+12V$. When $-12.00V \leq V_{IN} < -10.00V$, $V_{OUT} = 0.00V$. When $-10.00V \leq V_{IN} \leq +10.00V$, $V_{OUT} = (V_{IN} + 10V) / 4$. When $+10.01V \leq V_{IN} \leq +12V$, V_{OUT} will be equal to a value from 5.01V to 5.07V, due to the electrical characteristics of the LM358P-2A used.

Except for the buffer amplifier LM358P-4B where the output voltage V_{OUT} is obtained, the lower part of Figure 5 is identical to that of the first module (Figure 1).

The top part of Figure 5 is dedicated to producing two reference voltages: +5.00V and +6.26V. The components R4, D5 (10V zener diode) and C4 with the buffer amplifier LM358P-3A provide a 10.00V reference voltage from a +12V power supply. This 10.00V

reference voltage is then divided by using resistors R5 and R6 to obtain the +5.00V reference voltage.

Next, the +5.00V reference voltage is connected to the non-inverting input of the buffer amplifier LM358P-3B, whose output is fixed as a +5.00V reference voltage, capable of sourcing up to 20mA.

Likewise, the voltage is also divided by R7 and R8 to obtain a

+6.26V reference voltage, which is connected to the non-inverting input of the buffer amplifier LM358P-4A.

For proper operation, make sure that $R2 = R3$, $R1 = \frac{1}{2} R2$, $R5 = R6$, and $R8/(R7+R8) = 62.62\%$.

Example input and output voltage values for the analogue input module are shown in Table 1. **EW**

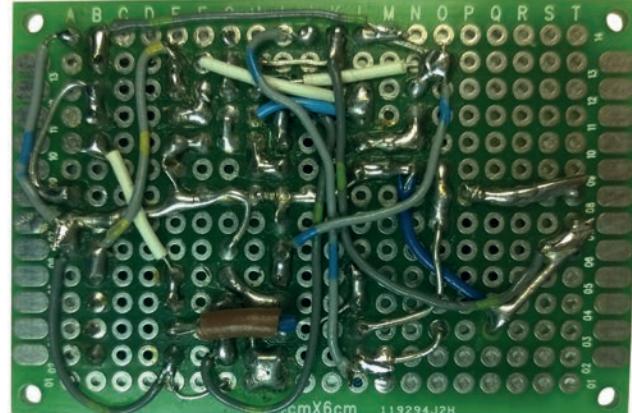
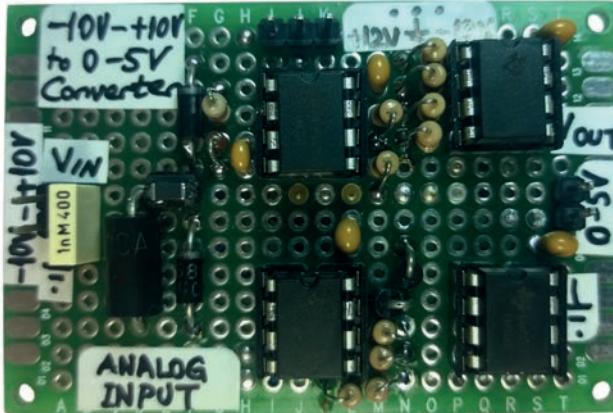



Figure 7: Top and bottom views of the prototype of analogue input module 2 of a -10V - +10V to 0-5V signal converter

Fluke/Philips PM3092 Oscilloscope
2+2 Channel 200MHz Delay TB,
Autoset etc - £250

STEWART OF READING
17A King Street, Mortimer, near Reading, RG7 3RS
Telephone: 0118 933 1111 Fax: 0118 933 2375
USED ELECTRONIC TEST EQUIPMENT
Check website www.stewart-of-reading.co.uk
(ALL PRICES PLUS CARRIAGE & VAT)

Please check availability before ordering or calling in

HP 54600B Oscilloscope
Analogue/Digital Dual Trace 100MHz
Only £75, with accessories £125

LAMBDA GENESYS	PSU GEN100-15 100V 15A Boxed As New	£400	Marconi 2305	Modulation Meter	£250
LAMBDA GENESYS	PSU GEN50-30 50V 30A	£400	Marconi 2440	Counter 20GHz	£295
IFR 2025	Signal Generator 9kHz - 2.51GHz Opt 04/11	£900	Marconi 2945/A/B	Communications Test Set Various Options	POA
IFR 2948B	Communication Service Monitor Opt 03/25 Avionics	POA	Marconi 2955	Radio Communications Test Set	£595
IFR 6843	Microwave Systems Analyser 10MHz - 20GHz	POA	Marconi 2955A	Radio Communications Test Set	£725
R&S APN62	Syn Function Generator 1Hz - 260kHz	£295	Marconi 2955B	Radio Communications Test Set	£800
Agilent 8712ET	RF Network Analyser 300kHz - 1300MHz	POA	Marconi 6200	Microwave Test Set	£1,500
HP8903A/B	Audio Analyser	£750 - £950	Marconi 6200A	Microwave Test Set 10MHz - 20GHz	£1,950
HP8757D	Scalor Network Analyser	POA	Marconi 6200B	Microwave Test Set	£2,300
HP3325A	Synthesised Function Generator	£195	Marconi 6960B	Power Meter with 6910 sensor	£295
HP3561A	Dynamic Signal Analyser	£650	Tektronix TDS3052B	Oscilloscope 500MHz 2.5GS/s	£1,250
HP6032A	PSU 0-60V 0-50A 1000W	£750	Tektronix TDS3032	Oscilloscope 300MHz 2.5GS/s	£995
HP6622A	PSU 0-20V 4A Twice or 0-50V 2A Twice	£350	Tektronix TDS3012	Oscilloscope 2 Channel 100MHz 1.25GS/s	£450
HP6624A	PSU 4 Outputs	£400	Tektronix 2430A	Oscilloscope Dual Trace 150MHz 100MS/s	£350
HP6632B	PSU 0-20V 0.5A	£195	Tektronix 2465B	Oscilloscope 4 Channel 400MHz	£600
HP6644A	PSU 0-60V 3.5A	£400	Farnell AP60/50	PSU 0-60V 0-50A 1kW Switch Mode	£300
HP6654A	PSU 0-60V 0.9A	£500	Farnell XA35/2T	PSU 0-35V 0-2A Twice Digital	£75
HP8341A	Synthesised Sweep Generator 10MHz - 20GHz	£2,000	Farnell AP100-90	Power Supply 100V 90A	£900
HP83630A	Synthesised Sweeper 10MHz - 26.5 GHz	POA	Farnell LF1	Sine/Sq Oscillator 10Hz - 1MHz	£45
HP83624A	Synthesised Sweeper 2 - 20GHz	POA	Racal 1991	Counter/Timer 160MHz 9 Digit	£150
HP8484A	Power Sensor 0.01-18GHz 3nW-10µW	£75	Racal 2101	Counter 20GHz LED	£295
HP8560E	Spectrum Analyser Synthesised 30Hz - 2.9GHz	£1,750	Racal 9300	True RMS Millivoltmeter 5Hz - 20MHz etc	£45
HP8563A	Spectrum Analyser Synthesised 9kHz - 22GHz	£2,250	Racal 9300B	As 9300	£75
HP8566B	Spectrum Analyser 100Hz - 22GHz	£1,200	Solartron 7150/PLUS	6½ Digit DMM True RMS IEEE	£65/£75
HP6662A	RF Generator 10kHz - 1280MHz	£750	Solartron 1253	Gain Phase Analyser 1mHz - 20kHz	£600
Marconi 2022E	Synthesised AM/FM Signal Generator 10kHz - 1.01GHz	£325	Solartron SI 1255	HF Frequency Response Analyser	POA
Marconi 2024	Synthesised Signal Generator 9kHz - 2.4GHz	£800	Tasakago TM035-2	PSU 0-35V 0-2A 2 Meters	£30
Marconi 2030	Synthesised Signal Generator 10kHz - 1.35GHz	£750	Thurby PL320QMD	PSU 0-30V 0-2A Twice	£160 - £200
Marconi 2023A	Signal Generator 9kHz - 1.2GHz	£700	Thurby TG210	Function Generator 0.002-2MHz TTL etc Kenwood Badged	£65

HP/Agilent HP 34401A Digital Multimeter 6½ Digit £325 - £375

HP33120A	Function Generator 100 microHz - 15MHz	£350
HP53131A	Universal Counter 3GHz Boxed unused	£600
Audio Precision	Universal Counter 225MHz	£350
Datron 4708	SYS2712 Audio Analyser - in original box	POA
Druck DPI 515	Autocal Multifunction Standard	POA
Datron 1081	Pressure Calibrator/Controller	£400
ENI 325LA	Autocal Standards Multimeter	POA
Keithley 228	RF Power Amplifier 250kHz - 150MHz 25W 50dB	POA
Time 9818	Voltage/Current Source	POA
	DC Current & Voltage Calibrator	POA

Marconi 2955B Radio Communications Test Set - £800